Wednesday 22 November 2017

Gleitender Mittelwert Phasengang


Es gibt viele Artikel über den Frequenzgang des gleitenden Durchschnittsfilters, aber alle scheinen sich auf die Größe zu konzentrieren. Allerdings ist die Phasenreaktion faszinierend und ich finde es schwer zu interpretieren. Die Phase scheint zu wickeln, aber sie wickelt sich im Intervall - pi, pi) anstatt an ihren Kanten. Beispiel unten: Ein phasenabwickelnder Algorithmus würde dieses nicht lösen, also ist es wirklich ein Pseudowickel. Wenn ich dem gleitenden Durchschnitt Taps hinzufüge, wird dieser Prozess ausgelöscht, so dass ich vermute, dass mathematisch der gleitende Durchschnittsfilter niemals 0 oder 2 pi erreichen wird, obwohl ich noch nie eine Erklärung dafür gesehen habe. Beispiel für ein 11-tippen: Ich finde dieses Verhalten faszinierend und wäre an der Interpretation eines Experten interessiert. Dies deutet darauf hin, dass die Merkmale bei bestimmten Schwachstellen im Frequenzgang verzerrt werden Ist es korrekt, die Phase eines gleitenden mittleren Filters stückweise linear zu nennen, anstatt linear ich vermute, nicht, da symmetrische FIR-Filter sind analytisch gezeigt, lineare Phase haben , Aber ich habe eine harte Zeit nennen diese lineare. Dass ein (Omega) ist nicht die Größe von H (Omega), aber es ist eine real-valued Amplitude Funktion, die auf positiv nimmt Als auch negative Werte. Die Phase phi (omega) - (N-1) omega2, wie in (1) definiert, ist offensichtlich linear. Das ist auch die gemeinsame Definition, wenn wir über eine lineare Phase Antwort sprechen. Die Phase, die Sie aufgetragen haben, ist nicht phi (omega), sondern Hut (omega), definiert durch Der Unterschied zwischen phi (omega) und Hut (omega) ist, dass, wenn A (omega) Null kreuzt, ein Phasensprung von pm pi im Hut auftritt (Omega), was einer Vorzeichenänderung in A (Omega) entspricht. Dennoch bezeichnen wir H (omega) als Frequenzgang mit linearer Phase, weil phi (omega) eine lineare Funktion von Omega ist. Es ist anzumerken, dass in der Praxis eine lineare Phase nur im Durchlassband eines Filters relevant ist, d. h. in einem Frequenzbereich, in dem keine Nullen von H (Omega) auftreten. Im Durchlaßband ist auch Hut (Omega) linear, weil es nur an den Nullen von H (Omega) springt. Der Wissenschaftler und Ingenieure Leitfaden zur digitalen Signalverarbeitung Von Steven W. Smith, Ph. D. Kapitel 19: Rekursive Filter Es gibt drei Arten von Phasenreaktionen, die ein Filter haben kann: Nullphase. Linearer Phase. Und nichtlineare Phase. Ein Beispiel für jedes von diesen ist in Abbildung 19-7 gezeigt. Wie in (a) gezeigt, ist das Nullphasenfilter durch eine Impulsantwort charakterisiert, die um den Nullpunkt symmetrisch ist. Die tatsächliche Form spielt keine Rolle, nur daß die negativ numerierten Abtastwerte ein Spiegelbild der positiv numerierten Abtastwerte sind. Wenn die Fourier-Transformation von dieser symmetrischen Wellenform genommen wird, ist die Phase vollständig null, wie in (b) gezeigt. Der Nachteil des Nullphasenfilters besteht darin, daß er die Verwendung von negativen Indizes erfordert, was für die Arbeit unpraktisch sein kann. Das lineare Phasenfilter ist ein Weg um dieses. Die Impulsantwort in (d) ist mit der in (a) gezeigten identisch, außer sie wurde verschoben, um nur positiv numerierte Proben zu verwenden. Die Impulsantwort ist immer noch symmetrisch zwischen links und rechts, die Lage der Symmetrie ist jedoch von Null verschoben worden. Diese Verschiebung führt dazu, daß die Phase (e) eine gerade Linie ist. Abrechnung des Namens: lineare Phase. Die Steigung dieser Geraden ist direkt proportional zum Betrag der Verschiebung. Da die Verschiebung der Impulsantwort nichts anderes bewirkt als eine identische Verschiebung des Ausgangssignals, ist das lineare Phasenfilter für die meisten Zwecke dem Nullphasenfilter äquivalent. Abbildung (g) zeigt eine Impulsantwort, die nicht symmetrisch zwischen links und rechts ist. Entsprechend ist die Phase (h) keine Gerade. Mit anderen Worten, es hat eine nichtlineare Phase. Nicht verwirren die Begriffe: nichtlineare und lineare Phase mit dem Konzept der System-Linearität diskutiert in Kapitel 5. Obwohl beide das Wort linear. Sie sind nicht verwandt. Warum ist mir egal, ob die Phase linear ist oder nicht Die Abbildungen (c), (f) und (i) zeigen die Antwort. Dies sind die Impulsantworten jedes der drei Filter. Die Impulsantwort ist nichts weiter als eine positiv gehende Schrittantwort, gefolgt von einer negativ gehenden Schrittantwort. Die Impulsantwort wird hier verwendet, weil sie anzeigt, was mit den ansteigenden und fallenden Flanken in einem Signal geschieht. Hier ist der wichtige Teil: Null - und lineare Phasenfilter haben linke und rechte Kanten, die gleich aussehen. Während nichtlineare Phasenfilter linke und rechte Kanten haben, die anders aussehen. Viele Anwendungen können nicht tolerieren, die linken und rechten Kanten anders aussehen. Ein Beispiel ist die Anzeige eines Oszilloskops, wobei diese Differenz als Merkmal des zu messenden Signals fehlinterpretiert werden könnte. Ein weiteres Beispiel ist die Videoverarbeitung. Können Sie sich vorstellen, schalten Sie Ihren Fernseher, um das linke Ohr Ihres Lieblings-Schauspieler suchen anders als sein rechtes Ohr finden Es ist einfach, einen FIR (Finite-Impulsantwort) Filter haben eine lineare Phase. Denn die Impulsantwort (Filterkernel) wird direkt im Designprozess spezifiziert. Damit der Filterkernel eine Links-Rechts-Symmetrie hat, ist alles erforderlich. Dies ist bei IIR (rekursiven) Filtern nicht der Fall, da die Rekursionskoeffizienten angegeben sind, nicht aber die Impulsantwort. Die Impulsantwort eines rekursiven Filters ist nicht symmetrisch zwischen links und rechts und hat daher eine nichtlineare Phase. Analoge elektronische Schaltungen haben das gleiche Problem mit dem Phasengang. Stellen Sie sich eine Schaltung aus Widerständen und Kondensatoren auf Ihrem Schreibtisch sitzen. Wenn der Eingang immer Null war, ist der Ausgang auch immer Null gewesen. Wenn ein Impuls an den Eingang angelegt wird, werden die Kondensatoren schnell auf einen Wert geladen und beginnen dann exponentiell durch die Widerstände zu zerfallen. Die Impulsantwort (d. h. das Ausgangssignal) ist eine Kombination dieser verschiedenen abklingenden Exponentiale. Die Impulsantwort kann nicht symmetrisch sein, da der Ausgang vor dem Impuls Null war und der exponentielle Zerfall nie wieder einen Wert von Null erreicht. Analoge Filter-Designer greifen dieses Problem mit dem Bessel-Filter an. Das in Kapitel 3 dargestellt ist. Das Bessel-Filter ist so ausgelegt, dass es eine möglichst lineare Phase aufweist, jedoch weit unter der Leistung von digitalen Filtern liegt. Die Fähigkeit, eine exakte lineare Phase bereitzustellen, ist ein klarer Vorteil von digitalen Filtern. Glücklicherweise gibt es eine einfache Möglichkeit, rekursive Filter zu modifizieren, um eine Nullphase zu erhalten. Abbildung 19-8 zeigt ein Beispiel dafür, wie dies funktioniert. Das zu filternde Eingangssignal ist in (a) dargestellt. Abbildung (b) zeigt das Signal, nachdem es von einem einpoligen Tiefpassfilter gefiltert wurde. Da es sich hierbei um ein nichtlineares Phasenfilter handelt, sehen die linken und rechten Kanten nicht gleich aus, sie sind umgekehrte Versionen voneinander. Wie zuvor beschrieben, wird dieses rekursive Filter implementiert, indem man bei der Probe 0 anfängt und in Richtung der Probe 150 arbeitet, wobei jede Abtastung auf dem Weg berechnet wird. Es sei nun angenommen, daß anstatt sich von der Abtastprobe 0 zur Abtastprobe 150 zu bewegen, bei der Abtastprobe 150 anfängt und sich zu dem Abtastwert 0 bewegt. Mit anderen Worten wird jede Abtastung in dem Ausgangssignal aus den Eingangs - und Ausgangsabtastwerten rechts von der zu bearbeitenden Abtastprobe berechnet auf. Dies bedeutet, daß die Rekursionsgleichung Gl. 19-1, wird geändert in: Fig. (C) zeigt das Ergebnis dieser Rückwärtsfilterung. Dies ist analog zum Durchführen eines analogen Signals durch eine elektronische RC-Schaltung während der Laufzeit rückwärts. Esrvinu eht pu-wercs nac lasrever emit - noituaC Die Filterung in umgekehrter Richtung erzeugt keinen Vorteil für sich, das gefilterte Signal hat noch linke und rechte Kanten, die nicht gleich aussehen. Die Magie geschieht, wenn Vorwärts - und Rückwärtsfilterung kombiniert werden. Die Abbildung (d) ergibt sich aus der Filterung des Signals in Vorwärtsrichtung und anschließendem Filtern in umgekehrter Richtung. Voila Dies erzeugt ein Nullphasen-Rekursivfilter. Tatsächlich kann jedes rekursive Filter mit dieser bidirektionalen Filtertechnik auf Nullphase umgesetzt werden. Die einzige Strafe für diese verbesserte Leistung ist ein Faktor von zwei in der Ausführungszeit und der Programmkomplexität. Wie finden Sie die Impuls - und Frequenzreaktionen des Gesamtfilters? Die Größe des Frequenzganges ist für jede Richtung gleich, während die Phasen einander entgegengesetzt sind. Wenn die beiden Richtungen kombiniert werden, wird die Größe quadriert. Während die Phase auf Null sinkt. Im Zeitbereich entspricht dies dem Falten der ursprünglichen Impulsantwort mit einer von links nach rechts gekippten Version von sich selbst. Beispielsweise ist die Impulsantwort eines einpoligen Tiefpaßfilters ein einseitiges Exponential. Die Impulsantwort des entsprechenden bidirektionalen Filters ist ein einseitiges Exponential, das nach rechts zerfällt, gefaltet mit einem einseitigen Exponential, das nach links zerfällt. Beim Durchlaufen der Mathematik erweist sich dies als doppelseitiges Exponential, das sowohl nach links als auch nach rechts zerfällt, mit demselben Abklingkonstanten wie der ursprüngliche Filter. Einige Anwendungen haben nur einen Teil des Signals im Computer zu einem bestimmten Zeitpunkt, wie zum Beispiel Systeme, die abwechselnd Input-und Output-Daten auf einer kontinuierlichen Basis. Bidirektionale Filterung kann in diesen Fällen verwendet werden, indem sie mit der im letzten Kapitel beschriebenen Überlappungsmethode kombiniert wird. Wenn Sie zu der Frage kommen, wie lange die Impulsantwort ist, sagen Sie nicht unendlich. Wenn Sie dies tun, müssen Sie jedes Signal-Segment mit einer unendlichen Anzahl von Nullen. Denken Sie daran, dass die Impulsantwort abgeschnitten werden kann, wenn sie unter dem Rundungsrauschpegel, d. H. Etwa 15 bis 20 Zeitkonstanten, abgeklungen ist. Jedes Segment muss mit Nullen auf links und rechts gefüllt werden, um die Expansion während der bidirektionalen Filterung zu ermöglichen. Ich muss einen gleitenden durchschnittlichen Filter mit einer Grenzfrequenz von 7,8 Hz zu entwerfen. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall nutzen Frequenzbereich Filter ndash user19373 Feb 3 16 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort ist, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Amplitudenreaktion des Filters H (omega). Mit ein paar einfachen Manipulationen, können wir, dass in einer einfacher zu verstehen: Das sieht vielleicht nicht leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Terme aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Fffs: Der Kehrwert dieser Gleichung ist für große N asymptotisch korrekt und hat etwa 2 Fehler Für N2 und weniger als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 ergibt die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpaßfilters (Einpol-LPF) mit einer gegebenen -3dB-Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). Tatsächlich haben sowohl das MA und das 1. Ordnung IIR LPF -20dBdecade Slope im Stopband (man braucht ein größeres N als das, das in der Figur verwendet wird, N32, um dies zu sehen), während aber MA spektrale Nullen bei FkN und a hat 1f Evelope hat das IIR-Filter nur ein 1f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stoppbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basiert auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) ca. N16F2 (N-N3) pi2. Und Ableitung der Kreuzung mit 1sqrt von dort. Ndash Massimo Jan 17 16 am 2:08

No comments:

Post a Comment